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A universal approximation of grain size from images
of noncohesive sediment
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[1] The two‐dimensional spectral decomposition of an image of sediment provides a
direct statistical estimate, grid‐by‐number style, of the mean of all intermediate axes of all
single particles within the image. We develop and test this new method which, unlike
existing techniques, requires neither image processing algorithms for detection and
measurement of individual grains, nor calibration. The only information required of the
operator is the spatial resolution of the image. The method is tested with images of bed
sediment from nine different sedimentary environments (five beaches, three rivers, and
one continental shelf), across the range 0.1 mm to 150 mm, taken in air and underwater.
Each population was photographed using a different camera and lighting conditions. We
term it a “universal approximation” because it has produced accurate estimates for all
populations we have tested it with, without calibration. We use three approaches (theory,
computational experiments, and physical experiments) to both understand and explore the
sensitivities and limits of this new method. Based on 443 samples, the root‐mean‐squared
(RMS) error between size estimates from the new method and known mean grain size
(obtained from point counts on the image) was found to be ±≈16%, with a 95% probability
of estimates within ±31% of the true mean grain size (measured in a linear scale). The
RMS error reduces to ≈11%, with a 95% probability of estimates within ±20% of the true
mean grain size if point counts from a few images are used to correct bias for a specific
population of sediment images. It thus appears it is transferable between sedimentary
populations with different grain size, but factors such as particle shape and packing
may introduce bias which may need to be calibrated for. For the first time, an attempt has
been made to mathematically relate the spatial distribution of pixel intensity within the
image of sediment to the grain size.

Citation: Buscombe, D., D. M. Rubin, and J. A. Warrick (2010), A universal approximation of grain size from images of
noncohesive sediment, J. Geophys. Res., 115, F02015, doi:10.1029/2009JF001477.

1. Introduction

[2] Grain size is of fundamental importance, governing
the mechanical, electrical and fluid dynamic properties of
sediment. The surface texture of a noncohesive, unlithified
sediment bed, as sensed by a photographic device, is the
two‐dimensional projection of its three‐dimensional struc-
ture. Using photographs to quantify grain size (and other
properties) of ancient or modern sediment beds, in an
automated fashion, is of considerable interest because it is
relatively cheap and rapid, and thus can allow much greater
coverage and resolution of grain size measurements com-
pared to traditional methods [Rubin, 2004]. This is because
measurements from digital images are orders of magnitude

faster than physical measurements such as sieving and
settling [Barnard et al., 2007]. In addition, measurements
are nonintrusive and sample only those grains that are
exposed to the flow and are thus subject to transport or
winnowing.
[3] Images of natural sediment beds are complex, typically

composed of at least several hundred individual grains all
varying in area, form, angularity, color, etc. In addition, grains
overlap and this casts shadows across the surface which are
irregular in size and spatially random in color. Existing
methods of automated grain size estimation from images rely
on calibration [e.g., Rubin, 2004; Carbonneau et al., 2004,
2005; Verdú et al., 2005; Buscombe et al., 2008], or on
advanced sequences of image processing to isolate and
measure each individual grain [e.g., Graham et al., 2005],
or both, which are often sediment population specific. In
this contribution, we describe a new method for estimating
mean grain size from an image which overcomes both these
disadvantages.
[4] The problem of accurate and automated grain size

estimation from an image of natural sediment can be
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approached in two fundamentally different ways. The first,
what we term a “geometrical” approach, is essentially
deterministic in the sense that it attempts to measure the
outlines of each grain (or portion of grain) within the image,
and in turn assign a measurement to it. In this way, a grain
size distribution may be built up, from which population
statistics such as the mean may be calculated.
[5] In essence, this approach attempts to use sophisticated

sequences of image processing algorithms to filter and detect
grain boundaries in an automated fashion, to mimic what a
person may achieve by manually digitizing grain boundaries
by eye. The problem is complicated in the absence of a
“background” image intensity against which to isolate
(threshold) the pixel boundaries of individual particles, but
has been successfully overcome on dry coarse gravel river
beds, usually, but not exclusively, supported in a sand or fine
gravel matrix [Sime and Ferguson, 2003; Graham et al.,
2005]. It remains, however, difficult to design a “universal”
algorithm which is truly transferable between different sedi-
ment populations, and which is equally applicable across the
range of noncohesive sediment sizes, because each popula-
tion creates different optical artefacts caused by the reflection
of ambient and flash light (grain‐shading issues), and/or
bed and grain structure (e.g., imbrication, or intragranular
marks and scratches). Procedural bias which causes over-
segmentation or undersegmentation of particles within the
image (which results in finer or coarser particles, respec-
tively, than in reality) will hinder the geometrical approach
until algorithms are designed which use some “artificial
intelligence” to detect or deterministically model, and thus
account for or remove the influence of, the length scale of
such optical artefacts. In other words, even a perfect
geometrical (edge detection) approach would also need to
recognize partially concealed grains and exclude them
from analysis, or alternatively include a statistical algo-
rithm to estimate the full size of the partially concealed
grains.
[6] The second approach to the problem is what we term

“statistical,” which treat pixel intensity variations in an
image as realizations of a stochastic process. The approach
is substantially different from other forms of particle size
analysis, both physical methods such as sieving/callipers
and geometrical image analysis as described above, because
instead of (deterministically) trying to detect and measure
each grain, the goal of a statistical approach is to charac-
terize the mean grain size (or other feature of interest). Thus
these methods directly receive information from, but do not
directly measure, the distribution of sizes. Rather, this
approach uses mathematical/statistical tools on the digital
image of sediment treated as a two‐dimensional matrix of
discrete numbers, to describe the geometry of the features
(i.e., grains). A statistical approach thus avoids the difficulties
associated with perfectly detecting the boundaries of every
grain in an image, regardless of sediment type and the grain
size fraction. Further, a statistical approach can operate at
finer scales (down to the theoretical limit of 1 pixel per grain)
compared to geometrical approaches [Carbonneau, 2005],
which in general require several pixels per grain (e.g., at least
23 for the technique of Graham et al. [2005]). Another
advantage of such an approach is that it, potentially, allows
the mean grain size (or other property of interest) within an

image to be expressed as a mathematical abstraction of the
spatial arrangement of image intensity.
[7] One such statistical approach consists of deriving

image statistics using spatial (morphological) operations to
decompose the image. For example, Buscombe and
Masselink [2009] progressively degraded images of sedi-
ment and used a measure of the loss of detail to calculate the
image’s fractal dimension. It was found that this dimension
was linearly related to sediment size. A similar approach
was used by Lian et al. [2004] on thin sections of sandstone
to derive the physical dimensions of pore spaces. Such an
approach requires considerable computational time, and is
sensitive to the choice of structure function shape and in-
crements in their size, in order to overcome the influence of
optical “noise” which, by definition, occurs at wavelengths
smaller and greater than the typical range of grain diameters.
Another statistical type of approach might use gradients in
pixel intensity across sediment images to characterize the
typical length scale of grains. It has thus far been used on
images of sediment for orientation analyses [e.g., Tovey and
Hounslow, 1995], but not yet for physical estimates of mean
grain size. Such an application might too be hampered by a
subjective choice of window size to negate (spatially filter)
the influence of optical noise. Such a choice becomes more
difficult the more mixed (poorly sorted) the grain size dis-
tribution within the image.
[8] It is more desirable to have a method in which no prior

estimate of feature size needs to be made through tunable
parameters such as search window size, i.e., one which uses
only the information in the image to derive a measure sen-
sitive to the length scale of grains. Such methods follow
from Rubin [2004], who showed that for images of natural
sediments with different mean grain size, and taken with the
same camera, the spatial autocorrelation coefficient at a
given lag is a function of the mean grain size. The spatial
autocorrelation profiles (correlograms) from a set of cali-
bration images (of known sediment size) can be used to give
highly accurate estimates of mean grain size from a given
sample image by solving a simple least squares problem.
This approach has been shown to be highly accurate for
close‐up photographs of sand and gravel [Rubin et al., 2007;
Barnard et al., 2007; Buscombe and Masselink, 2009;
Warrick et al., 2009] and similar techniques have been
shown to work well for larger‐scale, coarser‐resolution
imagery from aerial platforms [e.g., Carbonneau et al.,
2004, 2005; Carbonneau, 2005]. The approach is designed
to include and nullify specific sources of variability in
sample images by including them in the calibration. Such
variability comes from two sources: the camera system
(lens, spatial distortions and lighting), and the nonrandom
aspects to the structure of the sediment bed (for example
imbrication, and correlations of grain size with grain shape
and color). However, a consensus is yet to be reached with
regard to the sensitivity of results to calibration design and
content, so a universal algorithm (i.e., one that does not need
calibration) is desirable. For example, pressing questions
include how many grain size fractions the catalogue should
contain, to what pixel lag, and what degree of overlap is
acceptable in the calibration curves.
[9] Buscombe and Masselink [2009] showed that the

spatial autocorrelation algorithm was one of several suitable
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techniques which could be used within the calibration
framework of Rubin [2004], including variograms and
spectra. Buscombe [2008], drawing from work utilizing
variance spectra of sedimentary rock thin sections to
describe their stochastic geometry [e.g., Preston and Davis,
1976; Lin, 1982], described a technique using the two‐
dimensional correlogram of an image in order to estimate
the major and minor grain diameters. Furthermore, it was
suggested that the diameter of some contour between 0
and 1 of the two‐dimensional surface of autocorrelation
from an image of sediment should be related to the mean
grain size, which in turn suggested that an uncalibrated
estimate of mean grain size directly from the image might
be possible.
[10] Here, we propose such a method to estimate mean

grain size from an image that requires neither calibration nor
image segmentation procedures. The method is tested with
443 images of natural sediment beds composed of mixed
grain sizes, with mean grain sizes spanning 3 orders of
magnitude, from 0.1 to 150 mm, from nine different sedi-
mentary populations, each with a different camera and
lighting system. We use three approaches (theory, compu-
tational experiments, and physical experiments) to both

explain these results and explore the limits at which uncal-
ibrated estimates begin to fail.

2. Method

2.1. Theory

[11] To be useable in our method of grain size analysis, an
image of sediment (e.g., Figure 1) should contain only
noncohesive unlithified clastic material, where the entire
image is composed of touching grains at rest. The lighting,
provided by a natural or artificial source, should be such that
the illuminated surface is discretized by the camera. The
image should have a reasonably high contrast, meaning that
the pixel values, in 8‐bit intensity (greyscale) form, are
highest (i.e., lighter) on tops and flanks of individual grains,
lowest (i.e., darker) in the pores between grains and that
there is a noticeable gradient in pixel intensity with distance
across the grain/pore from highest to lowest value. The
above is also conditional on the image having an adequate
spatial resolution (which can usually be discerned by eye,
but which we also address experimentally in section 5.2). If
all visible particles in an image were well illuminated, the
entire image would be represented by sediment. In reality,

Figure 1. Images of sediment. The black bar in each image represents 1 mm. (a) River sand (with macro
lens, illuminated by a LED ring; dimensions 2448 × 2050 pixels; resolution 0.018 mm/pixel). (b) Inner
shelf sand (dried, handheld digital camera in macro mode, taken with a handheld Pentax Optio WP, illu-
minated by table lamp; dimensions 3264 × 2448 pixels; resolution 0.0076 mm/pixel). (c) Beach sand
(wireless camera, illuminated by LEDs; dimensions 1300 × 1160 pixels; resolution 0.0068 mm/pixel).
(d) Beach gravel (50 cm from bed inside a black box, illuminated by camera’s flash; dimensions
2048 × 1536 pixels; resolution 0.04 mm/pixel). (e) River gravel/cobbles (illuminated by natural sun-
light; dimensions 1700 × 1500 pixels; resolution 0.46 mm/pixel. (f) Beach gravel/cobbles (illuminated
by natural sunlight; dimensions 800 × 1600 pixels; resolution 0.46 mm/pixel).
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images will have dark regions between grains caused by
insufficient lighting. More pronounced under ambient solar
illumination, geometrical methods are especially sensitive to
the effects of the intergranular shadows [Graham et al.,
2005]. For the purposes of this paper, we define these
dark regions in images of sediment as “pores,” which should
not be confused with the more common definition of sedi-
ment porosity, even though these quantities may be related.
[12] Griffiths [1961] suggested that a sedimentary bed is a

function of 5 fundamental properties: size, shape, orientation,
packing and mineralogy. Photographs of sediment capture all
of these properties (Figure 1), and if the grains therein are
homogenous and isotropic (i.e., sections through, or subareas
of, the image have similar statistical properties) the two‐
dimensional variance spectrum, hereafter simply “spectrum,”
should contain information of all Griffiths’ elements except
those aspects of mineralogy related to grain color [Preston
and Davis, 1976].
[13] Although autocorrelation has been used for grain size

analysis [Rubin, 2004], its original development was in one
dimension using stepwise (spatial) calculations of correla-
tion. Here we follow Buscombe [2008] by presenting an
extension of these one‐dimensional autocorrelation techni-
ques into a two‐dimensional form in the frequency domain
rather than the spatial domain. Buscombe [2008] suggested
the use of the two‐dimensional autocorrelation function
(here denoted R, Figure 2) since the transform normalizes
magnitudes of spectral density, thus different images are
comparable. The spectrum of an image simultaneously maps
its entire contents into frequency space and thus information
can be used to quantify the dominant wavelength of features
therein. This property has been used to characterize the
texture and geometry of sedimentary rocks [Preston and
Davis, 1976; Lin, 1982; Torabi et al., 2008] as well as
unlithified sediment surfaces [Buscombe, 2008]. In this
contribution, we find a generalized solution to the problem,
thus removing the dependency on calibration. The new
approach can be carried out with correlograms derived in the

1D or 2D approaches, but the 2D approach is recommended
for the reasons stated above, and what follows concerns only
2D correlogram estimation.
[14] The spectrum of a demeaned image, denoted f ′, is the

Fourier transform of the autocovariance function, which in
turn is the dimensional form of the autocorrelation function
(R). The spectrum of pixel intensity in an image may be
expressed as the Fourier dual:

f
0
xð Þ ¼

Z 1

�1
eikx kð Þdk ð1Þ

 kð Þ ¼ 1

2�

Z 1

�1
eikxf

0
xð Þdx ð2Þ

where x is the spatial (lag) index, i is the imaginary unit, and
e is the base of the natural logarithm. Here k is the wave
number, the spatial analog of frequency (in other words, the
number of times the function f′ has the same phase per unit
space). Before applying the fast Fourier transform, each
pixel is multiplied by −1(x+y) to center it, and the mean
subtracted from each pixel to eliminate harmonics. The two‐
dimensional autocorrelation function R(x), normalized by its
total power, is found by computing the inverse Fourier
transform of its spectrum y(k) [Preston and Davis, 1976]:

 kð Þ ¼ 1

2�

Z
R
eikxR xð Þdx ð3Þ

[15] Fara and Scheidegger [1961] showed that, in a
simplified one‐dimensional case, the power spectral density
expressed in such a form invariant of the origin is the sum of
its real and imaginary parts, and is given by y(k)y*(k)
where * denotes complex conjugate. Expressed as such,
intervals of lengths other than 2p can be handled by scale
factors, and the wavelength of both f′ and R(x) can be given
by L(k) = 2p/k, where k has dimension length−1 [Fara and

Figure 2. (left) Image of sediment and (right) the center 200 × 200 pixel section of its autocorrelation
surface. The contour R = 0.5 is highlighted by red line. The image (resolution 0.0076 mm/pixel) is of shelf
sand, taken with an off‐the‐shelf point‐and‐shoot digital camera with macro capabilities, illuminated using
a desk lamp. The contour of R = 0.5 (Figure 2, right) is elliptical, oriented along the left‐right diagonal.
The major and minor axes of this diagonal are 6.02 and 4.83 pixels, respectively, corresponding to grain
diameters of 0.286 and 0.229 mm.
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Scheidegger, 1961], or 1/pixels. Thus a waveform given by
e−ikx will have wavelength (periodicity) L = 2p/k, and the
autocorrelogram of such a function should be in antiphase at
L/2 (half wavelength) lags; equal 0 at L/4 lags; and equal
0.5 at L/(2p) = k lags. This suggests that the lag at which
R = 0.5 is a suitable value for k. The theory should be equally
valid in two‐dimensional images if the grains are statistically
homogenous. In other words, the first‐order statistics of
enough 1D sections through the image are the same, in which
case the theory outlined above is equally as valid in 2D as in
a collection of 1D sections.

2.2. Application to Images

[16] The authors’ collective research efforts into statistical
methods (section 1) for automated grain size estimation has
resulted in a collection of hundreds of images of sediment
for which a measurement of the mean grain size is available.
All images were of natural noncohesive nonorganic sedi-
ment, either taken in situ in the field, or photographed in the
laboratory. Mean size was determined by manual “point
count” on the images, which is considered the benchmark
against which to test results from statistical methods applied
to (2D) images, rather than sieving [Barnard et al., 2007;
Rubin et al., 2004; Warrick et al., 2009]. In each digital
image, a grid composed of a 100 intersections was drawn
and the intermediate diameter of the grain (pore to pore)
underneath each grid intersection measured (therefore a
grid‐by‐number estimate). Note this is the intermediate
projected axis which is apparent in the image, not the true
(or calipered) intermediate axis. Both automated and manual
techniques measure this. Counting grains at every grid
intersection makes the grain selection free from operator
bias. Where the grain at a grid point is not fully exposed
(i.e., partially hidden by other grains), the person doing
the counting moves to the first complete grain located in
a specified direction. For further validation of this pro-
cedure, see Barnard et al. [2007].
[17] A total of 443 images were used in this study, across

the size range 10−1 to 102.2 mm, from nine different sedi-
mentary populations (five beaches, three rivers, and one
continental shelf; see Table 1), in situ (undisturbed), and
taken both in air and underwater. Each sediment population

was photographed using a different camera and lighting. All
the images used were those of a sediment bed in plan view,
containing noncohesive clastic material only, and where the
entire image is composed of touching grains. Both sub-
aqeuous and subaerial images are equally suited to the new
measure, as long as bubbles or other features do not obscure
the scene. General guidelines and hardware requirements for
suitable image collection in a range of subaerial and sub-
aqueous environments may be found in the work of Rubin et
al. [2007], Buscombe and Masselink [2009], and Warrick et
al. [2009].
[18] We used these images to experimentally verify that

the optimum objective value of k is found as the lag at which
the image’s autocorrelation surface (R) equals 0.5, in line
with the simple theory outlined above. This was achieved by
computing the correlogram for each image to find lags
associated with a range of coefficients of R, then substituting
these values for k, and correlating the resulting grain size
estimates with the true mean grain size for each image. We
confirmed the lag at which R = 0.5 as the appropriate value
for k, since this value yielded the highest correlation
between observed and estimated mean grain size. Thus
scaling by the image resolution r (in units of length/pixel),
provides a universal measure which scales to near unity with
measured mean grain size, z:

z ¼ 2�rð Þ=k ð4Þ

[19] Lag k may vary as a function of cross section through
R (Figure 2) if the grains in the image have any preferred
orientation. In this case the value of k (in pixels) is found as
the radius of an ellipse fitted to the coordinates [m, n] of the
contour R = 0.5 (Figure 2), following the method outlined in
Appendix A. The intermediate radius best agreed with true
mean size for images used in this study, and the major radius
is suggested only where a significant proportion of grains in
an image appear smaller than they really are due to partial
burial by other grains (imbrication). Thus the intermediate
radius was found to correspond with the mean of interme-
diate (b) grain axes. Ascribing the exact physical equiva-
lence of other measures of the ellipse, such as the mean

Table 1. Details and RMS Errors Associated With Each of the Nine Sediment Populations Tested in This Studya

Site Environment Camera N % Error % Error, No Bias S

1a Santa Cruz, Ca shelf sand u/wb video, mc 7 30.01 12.89 1.66
1b Santa Cruz, Ca shelf sand p‐a‐sd, m 10 10.56 6.24 1.53
2 Slapton, UK beach gravel p‐a‐s 116 20.52 12.42 1.75
3 Unknown (aggregate) river gravel p‐a‐s 16 6.44 4.97 2.22
4 Colorado River river sand u/w slre, m 16 18.10 6.51 1.75
5a Pescadero, Ca beach sand u/w slr, m 8 8.60 4.93 1.43
5b Pescadero, Ca beach sand p‐a‐s, m 6 9.91 3.71 1.44
6 Columbia River, Wa beach sand u/w slr, m 176 12.38 10.47 1.05
7 Santa Barbara, Ca beach sand u/w slr, m 49 16.90 15.29 1.25
8 Kachemak Bay, Al beach cobble p‐a‐s 10 13.98 10.01 5.34
9 Elwha, Wa beach cobble p‐a‐s 29 30.30 11.59 4.05

aNote that Santa Cruz and Pescadero populations have been split into two, because two different camera/lighting systems were used for each. N, sample
population (number of images, each containing a different sediment sample).

bUnderwater.
cMacro lens.
dPoint‐and‐shoot (handheld).
eSingle lens reflex. S, sorting coefficient (ratio of 84th and 16th percentiles; Folk and Ward [1957]).
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radius, was not attempted here but might be useful in studies
where the natural packing of grains with respect to their
exposed axes is of unusual character or special concern.
[20] Figure 3 (left) shows the comparison of estimated to

true mean grain size, both in millimeters, for each of the
nine tested sediment populations (Table 1). Figure 3 (right)
shows the histogram of individual errors is approximately
normal around zero (with a mean error of –5%) which
experimentally verifies our choice of 0.5 for the value of
grain length scale k (we return to the value of k in section
5.1. from a more theoretical standpoint). Note that
although the percentage‐based errors appear to be linear, the
normalization makes these values nondimensional and
therefore nonlinear and roughly equivalent to a phi‐based
measurements [cf. Warrick et al., 2009]. The root‐mean‐
squared (RMS, or “irreducible”) error (which includes both
systematical or procedural bias, and random error/scatter)
was calculated as 16.7%. These stated errors contain un-
certainties in both the measurements from the on‐screen
point counting procedure and the estimates using the auto-
mated technique.
[21] For a similarly sized sample (≈100 measurements),

Rice and Church [1996] suggest that physical measurements
of the clasts should result in ∼0.1� standard error in the
estimate of the mean. Considering that the mean grain sizes
of their samples were −4.1 to −5.1 �, this is equivalent to
∼2% RMS error in the estimate of the mean. However,
Warrick et al. [2009] showed that the photo count methods
resulted in a 7% mean irreducible error in estimates of
intermediate axis lengths. We postulate that the errors are
larger because the operator carrying out point counts finds it

more difficult to identify the intermediate axes of grains than
an operator with calipers in the field.
[22] The effect of the photo count error on our total

analysis error should be assessed in quadrature rather than in
a linear manner, owing to the likely independence of mea-
surement and estimation errors. Our total analysis error is
between ∼10% and ∼17%, so the “unresolvable” contribu-
tion is between

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:12 � 0:072

p
= 7% and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:172 � 0:072

p
=

15%. Thus errors introduced by the on‐screen point counts
are significant, although they are secondary to the remaining
errors of the analysis.
[23] For all populations there is a bias between the best

linear fit between true and estimated mean size, and the 1:1
relationship (Figure 4). The slope and intercept coefficients
of a linear regression can used to correct for this systematic
bias. However, reduced major axis (RMA) regression is
more appropriate than standard ordinary least squares (OLS)
regression when the independent variable, in this case the
mean size calculated from the point counting procedure, is
measured with error [Davis, 1986]. Based on the recom-
mendation of McArdle [1988], who suggests that RMA
should be used when the error rate in the independent var-
iable exceeds one third of the error in the dependent (it does
in our case: 7% versus 16%), we used RMA regression
following Davis [1986].
[24] This bias‐correcting procedure produces the same

effect as, in a practical application of the technique outlined
in this paper, carrying out manual point counts on a few
“end‐members” of the population, then correcting for any
bias by finding the RMA best fit between the estimate based
on point counts, and the estimate derived from this new

Figure 3. (left) Measured versus estimated grain size (mm), in log‐log space. The lighter shaded region
represents the 95% confidence interval of the results, and the darker shaded region represents a 100%
discrepancy, for which only two samples exceed. Different marker colors indicate each population of se-
diments. Note that Santa Cruz and Pescadero populations have been split into two, because two different
camera/lighting systems were used for each. Therefore, there are 11 “populations” represented in total.
(right) Histogram of the percent errors for individual samples, with mean and RMS error values (in
percent) for the entire sample population annotated.
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automated technique. Expressing errors relative to the RMA
fit between sample measures and estimates substantially
reduces the RMS error to 11% by correcting for bias.
Figure 4 shows the results from each of the nine popula-
tions in linear space, with best fit lines fitted through each
to show the deviation from the 1:1 relationship, and with the
bias‐corrected relationships and RMS errors annotated in
terms of percentages. Using a cumulative probability curve
(Figure 5) compiled using all 443 sample images, the new
method has a 95% chance of being within 20% for bias‐
corrected, and 31% for noncorrected estimates, of the true
mean grain size. The results for all tested sediment popula-
tions are summarized in Table 1.
[25] The errors for these uncalibrated noncorrected esti-

mates, for sediments which vary in size over 3 orders of
magnitude, are equal to or slightly higher than those re-
ported by previous researchers working with single size
fractions (either sand or gravel or cobble alone, and
excluding other size fractions even when present in the
image) using other similar methods designed for the same
purpose. The errors for bias‐corrected estimates (tantamount
to “semicalibration”), however, are equal to or smaller than

errors reported for similar techniques. Graham et al. [2005]
is currently the best geometrical technique for images of
natural sediment, reporting a 13% error (log scale) in con-
trolled lighting in the 16–90 mm particle size range
[Warrick et al., 2009]. Using the statistical calibrated auto-
correlation technique of Rubin [2004], Barnard et al. [2007]
(0.1–1.4 mm), Buscombe and Masselink [2009] (1–16 mm),
and Warrick et al. [2009] (1–200 mm) reported RMS errors
(in linear scales) of, respectively, ≈10%, 13% and 7–14%.
[26] We note that the range of (uncorrected) errors in

Table 1 is quite large, between 6 and 30% depending on the
population. It is clear that image resolution is important in
minimizing errors. For example, this must in part account
for the differences in errors between populations 1a (30%)
and 1b (10%) since they are the same sediment population
but the cameras used differ in resolution by an order of
magnitude (essentially being the difference between a video
camera and a high‐end handheld). This is further high-
lighted by the fact that populations 5a and 5b have almost
identical errors: they are the same sediment population taken
with different cameras with almost identical resolutions.
However, image resolution alone does not account for the

Figure 4. Results from each of the nine tested populations (in Table 1 and Figure 3), separated and in
linear space (mm). The 1:1 relationship is shown by the dashed line and the reduced major axis (bias
corrected) best fit as the heavy line. Individual population RMS (erms) and bias‐corrected RMS (ei) errors
are noted in each subplot.
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range in errors. For example, populations 8 and 9 are very
different sedimentologically, and have very different errors,
but were photographed with the same camera. It is likely in
this case (and, interestingly, perhaps only this case) that the
large errors are caused by poor sediment sorting.

3. Effects of Sample Size and Grain Shading

3.1. Computer Simulations

[27] In an image of sediment adequately resolved and
composed of touching grains with no preferred shape or
orientation, on a flat surface parallel to the camera (i.e., plan
view), the new measure (equation (4)) quantifies the diam-
eter of a typical grain because the contrast in shading
between pixels on grains and pixels on pores is sufficiently
large. In other words, on a mean grain length scale, local
pixel intensity tapers from maximum at the center of a grain
to minimum at the center between grains. This seems to be
important to the success of the new measure and suggests
that illumination with a strong directionality would have a
deleterious effect. The fact that percent discrepancies are
approximately equal across the size range suggests that

potentially nonoptimal shading artefacts scale with mean
grain size. In order to explore this further, computer simu-
lations of sediment beds were used to investigate the
uncertainty in grain size estimates due to variable shading.
Using computer simulations, it is possible to objectively and
independently vary shading, and generate many hundreds of
beds with which to test and verify ideas. We hypothesized
that the new measure would be sensitive to aspects of grain
shading which make the grains appear larger or smaller, on
average, than they really are.
[28] In an image, grains are not uniformly shaded pri-

marily because they differ in color. The length scale of this
variation is determined by the mean diameter of the grains,
or the mean distance between grains. It is also in part a
function of lighting. In a poorly illuminated image, grains
may appear smaller because light does not penetrate suffi-
ciently into (and reflect from) the pore spaces, whereas in a
well‐illuminated image, the apparent diameter of the grains
in maximized. We term these collective effects “intergran-
ular shading,” a term with close connotations with the more
common notion of image “contrast.” Marks, scratches and
hollows on individual grains, caused by the original crystal

Figure 5. Cumulative probability of less than stated percent error for original (noncorrected, solid) and
bias‐corrected (dashed) data. The 90th and 95th percentiles for noncorrected estimates are 25.17% and
32.07% and for bias‐corrected estimates 17.22% and 20.04%, respectively.
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shape and chemical/physical weathering, cause diffuse
reflectance which creates small patches of darker shading at
scales smaller than a grain’s mean diameter. Light patches
smaller than a grain’s diameter may be caused by either
diffuse interreflection, or specular reflectance from pro-
truding, angular, and crystalline surfaces on grains. The
collective term for the shorter‐wavelength deviations from
the grain shade is intragranular shading.
[29] A stochastic model was developed to create synthetic

sediment beds containing grains which are random in size,
shape, orientation and location. In this model, a range of
particle (2D) sizes, shapes and orientations is allowed to
exist, and particles of a given size, shape and orientation are
randomly distributed across the image/surface. A range of
particle colors can exist, which in an intensity image cor-
responds to several shades of grey. Collectively, this ensures
that the bed is homogenous and isotropic in a statistical
sense, but its random intergrain and intragrain properties can
be modified independently or simultaneously.
[30] A suitable approach to the realization of random

sediment bedding is a space‐filling tesselation based around
a random (in space) distribution of points. Consider the
centroid coordinates of grains in an image. The relative
position of each of these points, set V, in space is dictated by
the relative size and shape of each grain it represents. For
each of these points Vx the boundary enclosing all the

intermediate points lying closer to Vx than to any other point
is called a Voronoi polygon (also known as a Dirichlet
region or Thiessen polygon). A set of tessellating Voronoi
polygons based upon a set of points randomly distributed
in space, a so‐called Poisson‐Voronoi tessellation, bears
remarkable resemblance to a natural sediment bed
[Barndorff‐Nielsen, 1989] (also Figure 6). In particular,
Voronoi tesselations are a form of convex polygon, appro-
priate since natural sediment grains do not tend to have
inward facing edges in planform.
[31] In a fixed area, the general form of a size distribution

can be controlled by changing the number of polygons
(grains), itself fixed by the number of coordinate pairs
generated by a random number generator (Figure 6). Since
the coordinates of the boundary of each grain are known,
highly accurate estimates of the areas and axial dimensions
of these polygons can be made. The ratio of grain pixels to
gap pixels is controlled either using a combination of mor-
phological operations on images of the random tessellations
(we use morphological dilation using a circular structure
function which expands the grains into the gaps), and/or by
applying a scaling factor to each polygon. The synthetic
beds have bed packing densities similar to those found in
nature (between 0.6 and 0.7, or 1 minus porosity). The
particle size distributions and particle packing densities
generated by the model are akin to those found in natural

Figure 6. Poisson‐Voronoi tesselations with different numbers of polygons/grains. These form the basis
of the synthetic sediment beds generated to evaluate and test the contributions of shading variations to
method errors.
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sediments. It has long been established that natural particle
size distributions are log‐hyperbolic in form [Bader, 1970;
Barndorff‐Nielsen, 1977]. Note that the log‐hyperbolic
family of distributions includes the lognormal distribution as
a limiting case [Fieller et al., 1992]. In order to test the size
distributions of the synthetic surfaces, we fitted the hyper-
bolic distribution density function directly to the observed
data (measured grain diameters, rather than a mass size
distribution evaluated at discrete size intervals; see
Appendix B). The analysis confirmed that synthetic sedi-
ment surfaces very closely follow a log‐hyperbolic distri-
bution after a population size of about 1000 grains, and this

model fits the data better than a lognormal distribution. As a
rule of thumb, therefore, images should contain at least 1000
grains (or ≥32 in any cross section through a square image).
In images of real sediment, this is approximately the number
less than which there is a high probability that the correlo-
gram does not fall to a value of 0.5.
[32] A surface composed of Poisson‐Voronoi tesselations

resembles one which has been fractured into a set of smaller
pieces at random locations. In such cases it has been shown
that the particle area a and diameter z are related by z ≈ a0.5

[Grady, 1990], and it is important to note that the same
general relationship is found in the grain area and diameter
distributions of the computer‐simulated sediment surfaces.
[33] The model was used to generate sets of beds where

the intergrain and intragrain shading was varied indepen-
dently. For each case, nine images were generated, con-
taining between 1000 and 10000 individual grains.
Intragranular shading was varied by generating four sets of
nine beds containing grains each with either one, two, four,
or eight shaded facets (e.g., Figure 7). In these intragranular
tests, intergranular shading was held constant (black). This
had the effect of progressively increasing the variability of
individual particle shading.
[34] Interparticle shading was controlled by shading in the

pore spaces between particles, from all black pore space, to
pore space identical to that of the mean grain shade. Five
sets of nine beds were generated with pore intensities zero
(all black), 25, 50, 75, and 100% mean grain shade. In these
intergranular shading tests, in each case the grains has just
one shaded facet (i.e., the intragranular shading was held
constant).

3.2. Simulation Results

[35] Figure 8 summarizes the results of the tests with
variable intergranular and intragranular shading, for all 81
test synthetic beds (4 × 9 variable intragranular shading
beds, and 5 × 9 variable contrast/intergranular shading

Figure 7. Examples of the same grains in the synthetic bed
model with different degrees of shading (different numbers
of shaded facets per grain).

Figure 8. Effect of intergranular and intragranular shading on estimated mean grain size results. (a) The
effect of variable shading (intragranular shading): four sets of grain shading variations for each of the nine
sizes. (b) The effect of variable contrast (intergranular shading) on estimated mean grain size: five sets of
contrast (particle‐pore) variations for each of the nine sizes.
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beds). The effect of high intragranular shading variability is
to make a single grain look transitional with many smaller
grains, thereby making grains appear smaller than they
really are. The effect of low contrast between grains and
pores is to make grains appear larger than they really are,
and its effects become offset only when the intragranular
shading variability increases more than eightfold. Variable
intragranular shading causes variations of the order 5–10%,
whereas variable intergranular shading (grain‐pore contrast)
causes up to 100% discrepancies between measured and
estimated mean sediment size with synthetic beds.
Figure 8 clearly shows that the new method is very sensitive
to the relative difference between the shading of pores and
grains (intergranular variation or contrast; Figure 8, right),
and only weakly sensitive to intragranular (same grain)
variations in shading (Figure 8, left). We conclude that the
importance (to the estimated mean grain size) of high
intragranular shading variability is minimal/negligible when
there is low contrast between grains and pores, whereas the
effect of low contrast between grains and pores is significant.

4. Effect of Variable Lighting and Suspended
Sediment Concentration

[36] In order to further explore the limits of the new
technique to inform its practical use, three physical ex-
periments were carried out with photographic images of

gravel‐sized sediment. The first two concern practical
implementation of the new method underwater and specifi-
cally with coarse material (gravel/cobbles), for which sus-
pended sediment concentration and refraction of light by the
water/air interface will be captured in the photograph
because the image must be taken at some distance above the
bed through the water column. In contrast, the imaging of
sand underwater is carried out close to the bed using a macro
lens [e.g., Rubin et al., 2007], and therefore is not affected by
turbidity or random scattering of light. The third experiment
concerns the photography of coarse dry sediment in direct
and indirect sunlight. These experiments were just three si-
tuations out of a number of physical situations which might
conceivably degrade the image for the purposes of the
present technique, the full spectrum of which is somewhat
beyond the scope of the present contribution. These may
include shadows cast on the scene by nearby objects, small
vegetation/moss etc., oblique viewing angles and image
distortions (tangential, radial), the sensitivity of the new
method to which would require further tests.
[37] In the first physical experiment, images were taken of

well‐rounded beach gravel through 50 cm of water with an
inexpensive handheld waterproof camera. Point counts of
the grains were carried out to calculate the true mean grain
size. Increasing concentrations of mud were mixed into the
water each time the bed was rephotographed. Figure 9
shows the discrepancies between true and estimated grain

Figure 9. The effect of increasing suspended sediment concentration on size estimates of the stationary
gravel bed. (top) Percent discrepancy in mean size between the point count and each estimate. (bottom)
Example demeaned images (demeaning has been carried out in order to see the pebbles in the very turbid
water and introduces the observed vignetting).
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size (in percent) with concentrations of 3.31, 5.38, and
10.31 mg/L. There is a clear and increasing positive bias in
the results with increased suspended sediment concentration.
[38] The second experiment was conducted to test the

effect of random ambient light by water on mean grain size
estimates. One hundred images of well‐rounded beach
gravel were taken underwater with agitation of the water
surface large enough to cause natural light to refract in
random patches on the gravel surface, but small enough so
as not to induce motion of the clasts. Again, point counts on
one image were used as a benchmark to compare the results.
Figure 10 shows the discrepancies between true and esti-
mated mean grain size (in percent) as a result of nonuniform
natural scattering of light in water. The variability was
within ±10% which, encouragingly, is lower than the RMS
error of the method.
[39] The third experiment was conducted to test the effect

of variations in natural daylight, in air, on mean grain size
estimates. Two images were taken of well‐rounded sta-
tionary beach gravel at every hour through the day, from
1 m above the bed. The first image of each pair was
unshaded, and the second shaded by an umbrella. Errors in
mean grain size estimates were once again evaluated against
a point count carried out on the grains in the image. Figure 11
shows the percent errors in estimates as a function of sun
angle, for both the shaded (squares) and unshaded (circles)
sets of photographs. Errors were of the order 15–25% when

no measures were taken to shade the grains from direct
sunlight, and were minimized to within ±5% when images
were shaded to remove large directional shadows cast by the
grains on each other. These findings are consistent with the
findings of Graham et al. [2005] and Warrick et al. [2009],
who similarly found significant reductions in error when
measures were taken to remove large shadows caused by
oblique sun angles. We did not find a clear relationship
between solar angle and error, however since the role of solar
angle on output was not fully explored (for example at rel-
atively high latitudes) it remains an important area of
research beyond the scope of this paper. Since significant
improvements occurred when lighting source was diffuse,
we recommend that shading from direct sunlight is always
made, because the discrepancies (in mean grain size) which
may arise due to the unevenness of the surface (and possibly
the intensity of sunlight) may outweigh those introduced by
the angle of solar incidence.

5. Discussion

5.1. Explanation for k

[40] Mean grain size has been found to be directly related
to the frequency of “typical” features in an image, a function
of the wave number k which can be estimated from the
image’s autocorrelogram derived by spectral means. As
stated in section 2.1., the reason why k is best approximated

Figure 10. The effect of water waves refracting light onto a stationary gravel bed. (top) Percent discrep-
ancy in mean size between the point count and each estimate. Frames 1, 33, 67, and 100 shown to dem-
onstrate the range of lighting conditions.
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as the lag at which the autocorrelation coefficient R = 0.5 is
because the correlogram of a regular trigonometric series in
the form eikx takes the value 0.5 at lag L/(2p) = k. Corre-
lograms of images of sediment (and synthetic sediment
surfaces) do not have this general form, however, because
the features (grains) therein are not periodic, having a dis-
tribution of sizes and shapes. Instead, correlograms of sed-
iment images are more exponential in form [Buscombe and
Masselink, 2009; Warrick et al., 2009]. A more satisfactory
explanation for k would therefore reconcile how a wave-
length measure of a periodic function can also give the
wavelength of a function with a correlogram which is
exponential in form.
[41] A starting point is the idealized situation described by

Rubin [2004] of a checkerboard pattern (uniform square
grains shaded randomly, no overlap, and no pores), where
autocorrelation at some lag less than the diameter of the
“grain” depends on the fraction of offset pixels still on that
same grain. In this oversimplified conceptual model, auto-
correlation (given by −0.1x + 1, x being the spatial index, or
lag) falls to 0 at the grain diameter, and at R = 0.5 half of the
offset pixels remain in the same grain (again having a cor-
relation of 1), and the half that shift into the next grain have
a correlation of zero, combining to give 0.5. Assuming the
grains are homogenous, the value R = 0.5 represents, sta-
tistically, the length scale over which half of the grain/pore
correlations reach ≈0, and half are still at ≈1 (on the same
grain). That this is a suitable value for k is intuitively clear
since it is the lag at which the data correlates half as well as
at zero lag. The square grain correlogram crosses zero at lag
2k. The correlograms of −0.1x + 1 and periodic function eikx

pass very close to each other, and for the square grain
function this occurs at R = 0.5 at lag x = k. However, real

grains in an image are not square; they have a distribution of
sizes and pores separating them; and are randomly located.
So we require a model for a random subdivision of space
where the individual elements have a size distribution. In
doing so, we can arrive at a correlogram which is expo-
nential in form but in which k is the lag at which R = 0.5.
[42] Consider, then, a one‐dimensional section of a binary

image of grains and pores with n pixels representing pores.
Assuming these n points are randomly distributed on the
line of length X, the (binomial, pores being 0 and grains
being 1) probability of finding exactly m (m ≤ n) pore pixels
on a line segment of length l (x ≤ X) will be Poisson in form
because n is large [Grady, 1990]; thus,

P m; xð Þ ¼ e
1
zx

1
z x

� �m
m!

ð5Þ

where 1/z, or the reciprocal of mean grain size z, ≈ n/x. The
probability that there is no pore pixel on the line segment of
length x (or its inverse, that there is a grain pixel on that line)
is therefore given by

P 0; xð Þ ¼ e�
1
zx ð6Þ

which is Lineau distributed and exponential in form [Grady,
1990]. In this way, P(0, x) = 0.5 at z. This probability of
finding pixels representing grains along a line of the same
length as the mean diameter is 0.5. This is essentially the
same as the well known fragmentation theory of Mott
[1947], and is the case for the homogenous and isotropic
sediment bed where the number of pixels representing
grains and the number of pixels representing pores are
equal. However, this simple model can be adjusted to
account for significantly different bed sediment concentra-
tions. Since k scales with 1/z, the correlogram R of the
function P(0, x) may be given by

R xð Þ ¼ e�kx ð7Þ

This simple one‐dimensional binary case should be valid if
the image is homogenous and isotropic in geometry and
shading, because all cross sections through the image will be
the same in a statistical sense. In the present case, [7] can
also be approximated as a function of the natural logarithm
of the value of R at x = 1 (R1) to give

R xð Þ ¼ eln R1ð Þx ð8Þ

hence packing density becomes implicit and is related to R1.
Similar conclusions have been drawn by researchers
developing stochastic models of the physical structure of
porous rock [e.g., Lin, 1982; Sen, 1984; Koutsourelakis and
Deodatis, 2005; Torabi et al., 2008].
[43] The gradient in the correlation surface around R = 0.5

gives an indication of the inherent precision in that location
with respect to grain size (z). Using the simple exponential
model [7] as the idealized case, we note that the slope of R
will get smaller with increasing lag, so the slope at lag
associated with R = 0.5 will always take on intermediate
values. We also note that the slope of R at this point will
diminish with increasing k. The sensitivities of R to changes
in, respectively, k or x may be assessed using the derivatives

Figure 11. The effect of variable ambient solar light on
size estimates of a stationary gravel bed. Percent errors are
shown as a function of solar altitude angle (in degrees) for
both the photographs where the grains were shaded from
direct sunlight (“shaded,” corresponding to the square mar-
kers), and the photographs that were not shaded (circles).
Those times where lighting conditions were hazy are de-
noted by filled markers.
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of [7] which are given by dR/dx = −ke−xk and dR/dk =
−xe−xk. Of most relevance are the changes in R as a function
of changes in x which are, using [4], given by (−1/p)k (but
due to discretization into 1 pixel steps an approximation
−k1/3 should suffice). One pixel step is equivalent to (2p)dz
or e−dk − 1. This is a first approximation on the typical
sensitivities. Since this will be affected primarily by anis-
tropy in the 2D correlogram, and variable sediment sorting,
more precision would be achieved empirically.
[44] The simplicity of the stochastic geometric model of

equation (7) allows its relationship to the spectral theory of
section 2.1 to be formalized as follows. Substituting P(z) for
P(x), the characteristic function �(k) may be defined as the
Fourier transform (G) of the probability density function
[Brown and Hwang, 1997], which here is defined

� kð Þ ¼ �½P zð Þ� kð Þ ¼
Z 1

�1
eikzf zð Þdz ð9Þ

Since the total integral of P(z) is 1 (
R1
�1�(k)dz), the prob-

ability density can be recovered using an inverse Fourier
transform:

P zð Þ ¼ ��1
k � kð Þ½ � zð Þ ¼ 1

2�

Z 1

�1
e�ikz� kð Þdz ð10Þ

[45] We also note that the Poisson‐Voronoi tesselations
used as the basis for the computer simulations in section 3
would be entirely consistent with the earlier observation
that particles are distributed according to the theory of Mott
[1947], since fragmented (fractured) surfaces also consist of
convex polygons [Grady, 1990]. It is also important to note
that curves generated by the cumulative probability density
function of a Poisson‐Voronoi tesselation, as given by
Muche and Stoyan, [1992], and in the same notation as
equation (7), would give a correlogram in the form:

R xð Þ ¼ 1þ 2kxð Þe�2kx ð11Þ

[46] Figure 12 summarizes how the spectral k of section 2.1,
from a periodic function, is useful in describing the expo-
nential correlograms of real sediment. The lag at which the
correlogram of the periodic function e−ikx has the value 0.5 is
also the same lag at which the exponential correlogram
(equation (7)) has the value 0.5. Note that R(x) = e−kx

reaches 0, and e−ikx completes one cycle, at L = (2p)/k. The
theoretical correlogram of a Poisson‐Voronoi tesselation
(equation (11)) also passes very close to 0.5 at lag k, which
explains its usefulness in modeling natural sediment beds.

Figure 12. Theoretical correlograms for the square grain idealized case (Rubin [2004]; red dashed line)
as a function of lag x; a periodic function (black solid line); an exponential function (equation (7), blue
dotted line), and a Poisson‐Voronoi tesselation (equation (11), green dots), all with “typical feature
length” k = 5−1. The exponential curve has been constructed using bed packing concentration c = 0.65.
Note how the exponential, Poisson, and periodic correlograms equal 0.5 (horizontal dashed line) at
identical lag.
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The key information content of the image with respect to
mean grain size is therefore in the high frequency part of the
correlogram (and spectrum) up to R = 0.5. The divergence of
the correlograms after that point is irrelevant to the calcu-
lation of mean grain size. However, for estimation of the
entire grain size distribution there is likely to be the most
information content where the correlogram has the greatest
curvature. We have presented three new possible models of
a sediment image correlogram which may be a starting point
for research into estimation of more parameters of interest
from photographs of natural beds, including the distribution
of sizes.

5.2. Note on Image Resolution

[47] The minimum resolvable grain size is a function of
spatial resolution and area of the image, and the distribution
of grain sizes. While it is often possible to tell by eye if
grains in the image are resolved, it would be more useful if
quality control was achieved through the use of an auto-
mated and quantitative measure of how resolved the grains
are. Therefore, experiments were conducted in order to find
an objective measure of image resolution with respect to the
features within. The approach taken was to progressively
downsample images (i.e., interpolate over a smaller grid) of
synthetic and real sediment. It was determined empirically
that a suitable definition for an underresolved image, as-
certained subjectively by eye and also objectively as the
point which sees the greatest decrease in standard deviation
per unit downsample rate, is one whose autocorrelation
value at lag 1 is ≤

ffiffiffiffiffiffiffiffi
1=2

p
≈ 0.7. The theoretical autocorrela-

tion curve where R(1) =
ffiffiffiffiffiffiffiffi
1=2

p
, as expressed by equation (8),

may be taken as an approximation to the correlogram at the
threshold between adequately and not adequately resolved.
This yields a minimum grain radius of 2–3 pixels, which
seems reasonable both intuitively and visually, and also
agrees with the minimum workable grain scale of Warrick
et al. [2009].
[48] The value R = 0.5 always corresponds to the most

linear and steepest part of the correlogram of an image.
Since grain size and lag are related by two scalars (2p and
r), the same applies when the correlogram is expressed in
physical units of length rather than pixels. While ellipse
fitting (Appendix A) can return typical lag k at subpixel
precision (i.e., decimal lags), sensitivities in grain size are
potentially high to small deviations away from R = 0.5 in
this region (e.g., 0.49 or 0.51: section 5.1 discusses the
sensitivities using the derivatives of (4)). The effect could be
introducing error to the estimated mean grain sizes and
while beyond the scope of the present contribution to
quantify this experimentally, we predict that in practice this
is only a concern when the image resolution is relatively
poor, near the limit of 2–3 pixels suggested above.

5.3. Summary and Recommendations

[49] The new method reads grain size directly from the
image, and produces a result which is most closely related to
the mean intermediate (b axis) particle diameter. This
measure has been found to be a linear function of the radius
of an ellipse fitted to the R = 0.5 contour of the 2D auto-
correlogram (according to the method in Appendix A). This
radius may be thought of as the mean section length from
edge to center of the ellipse. No averaging takes place in the

estimate, over individual particles or sediment size classes.
The measure may be thought of as more closely related to
the mean of individual particle diameters rather than the
moment‐derived mean of a size distribution evaluated over
discrete grain size classes. The measure of sediment size
against which estimates have been compared is the mean of
100 particles, randomly sampled, on corresponding images,
measured by eye from pore to pore across the intermediate
(b) axis of the particle (here called point counts). The
method presented here is sensitive to the major axes of the
projected areas of grains lying imperfectly in a semiplane,
which has been shown by Kellerhals et al. [1975] to, given
sufficient sample size, satisfactorily approximate the true
mean intermediate (b) axis. Thus our method inherently
accounts for the effects of overlapping grains. A correction
factor would have to be applied to the results of the tech-
nique outlined in this contribution in order to provide esti-
mates of the mean long (a) and short (c) axes of particles.
[50] A number of recommendations can be made with the

general use of the new method. For example, correlograms
with value at lag 1 ≤

ffiffiffiffiffiffiffiffi
1=2

p
≈ 0.7 should be removed

because it is likely that the grains are underresolved.
Autocorrelation should be calculated over sufficient lags to
ensure R falls to below 0.5. However, there is no new
information related to mean grain size at lags beyond that at
which R = 0. Since there is a disproportionate amount of
information in the first few lags, autocorrelation should be
calculated for every 1 pixel shift (unless, conceivably, image
resolution is unusually high in which case there is little new
information at each pixel lag). Lighting of sediment should
be optimized so the contrast between pores and grains is
maximized without overexposing either and avoiding strong
reflections from grain facets and crystal faces. Collectively,
this means lighting as diffuse as possible with no gradient
perceivable by eye, which further means that lighting from
at least two opposing sides of the image rather than above
should find greater success.
[51] Computer simulations highlighted the sensitivities of

the measure to the relative difference between the shading of
pores and grains (intergranular shading), and only weakly
sensitive to intragranular (same grain) variations in shading/
color. The contrast between grains and pores (the inter-
granular spaces) should be maximized and, in an adequately
resolved image, appears more important than intragranular
(same grain) shading. This factor should be considered in
the design of lighting for the photograph collection. The
measure is sensitive to anything which obscures the variation
in intensity at the grain scale, which includes large distortions
in the image. These macroscale variabilities are in general
more important to grain size errors than microscale vari-
abilities, i.e., subgrain and subpixel [cf. Carbonneau, 2005].
[52] Physical experiments showed that turbid water

caused significant discrepancies (up to 40%) between esti-
mated and measured grain size, but that random refraction of
light caused by water waves did not create a larger error
(within ±10%) than the inherent error in the method. Errors
were minimized to within ±5% in images of gravel beds in
air, illuminated by ambient solar light, when images were
shaded to remove large directional shadows cast by the
grains on each other.
[53] The insights obtained here may also be used to

optimize the use of spatial autocorrelation technique of
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Rubin [2004], which solves for mean grain size using a least
squares fit between the correlogram of a sample image (of
unknown mean grain size) and a catalogue of correlograms
associated with sediment of known mean grain size. For
example, the theoretical forms of the correlogram as pre-
sented in this paper may be of use in the selection of grain
size fraction spacing, and other ways pertinent to calibration
catalogue design. We also note that equation (4) should have
a similar derivation for other similar statistical approaches,
for example semivariance [e.g., Carbonneau et al., 2004,
2005; Verdú et al., 2005; Buscombe and Masselink, 2009].
[54] There may be a unique value of R associated with

several percentiles of the grain size distribution, but this may
be restricted to idealized cases of very well sorted sediment
photographed at very high resolution. The highest level of
precision will be achieved if the new method is partially
calibrated. By this we mean that, if point counts on (fine and
coarse) end‐members of individual sediment populations
reveal significant bias (in the form of an apparent slope in
data away from the 1:1 line, e.g., Figure 4), maximum
precision will be achieved by carrying out a reduced major
axis regression and correcting for the slope of the bias.

6. Conclusions

[55] A new method for characterizing mean grain size has
been proposed, utilizing the spectral properties of an image
of sediment. It is designed to provide a robust approximation
to mean grain size from any image of noncohesive sediment
taken under controlled conditions. Like other image‐based
methods, it is inexpensive, rapid and unintrusive.
[56] It has been shown to work well for sand, gravel and

cobble‐sized sediment, providing an estimate of mean grain
size with an RMS error of ∼16%, and with a 95% proba-
bility of estimates within 31% of the true mean grain size
without any calibration. It is thus fully transferable between
all noncohesive sediment types. The RMS error reduced to
∼11%, with a 95% probability of estimates within 20% of
the true mean grain size if point counts from a few images
are used to correct the bias for a specific population of
sediment images. A combination of theory, computational
experiments, and physical experiments was used to both
understand and explore the sensitivities and limits of this
new method.
[57] Like previous statistical approaches, the method

described in this contribution has circumnavigated the dif-
ficult problem of detecting individual grains in a rigorous
way which is portable across different size fractions. Unlike
previous statistical methods, however, calibration is not
required for individual sedimentary environments. Collec-
tively, this has allowed the development of a fully trans-
ferable method for the first time. In addition, the stochastic
approach has facilitated the expression of the spatial distri-
bution of pixel intensity within the image of sediment to the
mean grain size in a mathematical way.
[58] The adoption of a statistical approach to mean grain

size estimation from images of sediment avoids the com-
plexities of a deterministic approach for application to
noncohesive sediment of all sizes, mineralogies, and types.
The spectrum of an image is an ideal tool to detect the mean
length scale of intensity variation because it receives con-
tributions from all spatial frequencies and orientations

simultaneously. The method is computationally efficient (an
image of several megapixels in size may be processed in just
a few seconds), and does not require identification and
measurement of any individual grains. Indeed, in the
approach outlined here the distribution is not required for
estimating the mean grain size. Hence, there are fewer
sensitivities to the tails of the population, and no truncation
is necessary. However, further work should uncover statis-
tical measures derived directly from the two‐dimensional
autocorrelogram which are sensitive to percentiles of the
grain size distribution, from which other sedimentological
parameters such as sorting, or other properties of interest,
might be derived. The new method described here may also
be useful for quantifying the dominant wavelength of other
suitably homogenous entities within images.

Appendix A: Ellipse Fitting to Contour R = 0.5

[59] An ellipse is fitted to a contour described by the
coordinates [m, n] using a second‐order polynomial given
by

F m; nð Þ ¼ am2 þ bmnþ cn2 þ dmþ enþ f ¼ 0 ðA1Þ

where a = [a, b, c, d, e, f]T are coefficients, and T denotes
transpose. We use the least squares method of Fitzgibbon et
al. [1999], as detailed in the work of Buscombe [2008].
Where = denotes imaginary part and N is the number of
coordinate pairs, the mean ellipse radius (lags in units of
pixels) is found as

k ¼
P= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0� m2 þ 0� n2
p� �

N
ðA2Þ

[60] It is, however, more likely that the contour is non-
circular and thus k may vary as a function of cross section
through the autocorrelation surface (if the grains or other
features such as light speckles in the image have any pre-
ferred orientation). The ellipse can be sectioned in infinite
planes, and each will give a slightly different result. We
determined that the value of k which most closely corre-
sponds to the mean of the intermediate axes of the grains is
the radius of the ellipse given by

k ¼ 1=
ffiffiffiffiffi
&v

p ðA3Þ

where & = 1/(�TE × � − f), using translations given by:

E ¼ a; b=2½ �T b=2; c½ �T ðA4Þ

and

� ¼ � 2Eð Þ�1 d; e½ �T ðA5Þ

and where s1 = cos(�); s2 = sin(�); and � is the ellipse
orientation:

v ¼ as1s2ð Þ � bs1s2ð Þ þ cs21
� � ðA6Þ
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Appendix B: Maximum Likelihood Estimate of
Log‐Hyperbolic Probability Density Function

[61] The log‐hyperbolic distribution is a four‐parameter
(a, b, d, m) density function. The maximum likelihood
estimates of the parameters are found by iteratively mini-
mizing the density function using all four parameters
simultaneously. Here, the approach taken was to minimize
the density function of the hyperbolic distribution in the
following form, with respect to the Lebesgue measure
[Jensen, 1988]

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
2��K �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p� � e��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ x�	ð Þ2

p
þ� x�	ð Þ ðB1Þ

where a > 0, a > kbk and d > 0, subject to
R

p(x) = 1,
using the unconstrained nonlinear optimization derivative‐
free simplex method of Lagarias et al. [1998] which can
handle discontinuities, for example when d = 0 [see Fieller
et al., 1992]. The modified Bessel function K was of the
2nd kind, and its constant set to unity. For a more detailed
description of the parameters refer to Barndorff‐Nielsen
[1977] and Fieller et al. [1992]. For a review on the
computational aspects of hyperbolic distribution fitting the
reader is referred to McArthur [1986] and Jensen [1988].
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